Ethylene-releasing plant growth regulators promote ripening initiation by stimulating sugar, acid and anthocyanin metabolism in blueberry (Vaccinium ashei)
Tej P Acharya
BMC Plant Biol. 2025 Jun 5;25(1):766. doi: 10.1186/s12870-025-06799-x.
ABSTRACT
BACKGROUND: Fruit ripening is a coordinated process that leads to an increase in sugars, decrease in acids and accumulation of pigments. Blueberry fruit exhibit an atypical climacteric ripening behavior. These fruit display an increase in respiration and ethylene production during ripening, however ethylene synthesis is developmentally regulated. In this study, the effect of ethylene on blueberry fruit ripening was investigated via preharvest applications of ethylene-releasing plant growth regulators (PGRs), ethephon and 1-aminocyclopropane 1-carboxylic acid (ACC), in one southern highbush cultivar, Miss Lilly in 2019, and two rabbiteye cultivars, Premier and Powderblue in 2019 and 2020. Further, the effects of these two PGRs on fruit metabolism during ripening in the two rabbiteye cultivars, and postharvest fruit quality in all three cultivars were evaluated.
RESULTS: Both PGRs increased ethylene evolution within 1-3 days after treatment (DAT). Ethephon and ACC applications increased the rate of ripening within 5 DAT in all cultivars, and increased ripe (blue) fruit by up to 35% and 29%, respectively between 7 to 10 DAT compared to the control. Metabolite analysis revealed that PGR treatments resulted in an immediate, but transient increase in sucrose, glucose and fructose, in ‘Premier’ at 3 DAT. Malate decreased at 3 DAT in response to both PGR treatments in ‘Premier’, and at 5 DAT in ethephon treatment in both cultivars. A rapid increase in the concentration of multiple anthocyanins was noted at 3 DAT in response to both PGRs in ‘Premier’ and ‘Powderblue’. Gene expression analysis revealed an increase in transcript abundance of VACUOLAR INVERTASE (vINV) and multiple anthocyanin biosynthesis genes between 1 and 3 DAT after PGR treatments in both cultivars, supporting the metabolite changes. However, the alteration in fruit metabolite concentrations were not sustained, and similar in PGR-treated fruit compared to the control in ripe fruit harvested at 10 DAT. Postharvest fruit quality attributes, such as firmness, total soluble solids, titratable acidity, and visual quality, were not consistently affected by the PGR applications compared to control treatments across all cultivars. A decrease in fruit weight was noted, although not consistently, in response to PGR treatments.
CONCLUSIONS: Overall, this study demonstrates that ethylene plays a crucial role in promoting ripening via rapid and transient stimulation of sugar, acid and anthocyanin metabolism. The promotion of fruit ripening by ethylene-releasing PGRs can lead to minimal but inconsistent changes in fruit quality attributes during postharvest storage.
PMID:40474063 | DOI:10.1186/s12870-025-06799-x