Mapping of cotton bolls and branches with high-granularity through point cloud segmentation
Mapping of cotton bolls and branches with high-granularity through point cloud segmentation Lizhi Jiang
Plant Methods. 2025 May 20;21(1):66. doi: 10.1186/s13007-025-01375-8.
ABSTRACT
High resolution three-dimensional (3D) point clouds enable the mapping of cotton boll spatial distribution, aiding breeders in better understanding the correlation between boll positions on branches and overall yield and fiber quality. This study developed a segmentation workflow for point clouds of 18 cotton genotypes to map the spatial distribution of bolls on the plants. The data processing workflow includes two independent approaches to map the vertical and horizontal distribution of cotton bolls. The vertical distribution was mapped by segmenting bolls using PointNet++ and identifying individual instances through Euclidean clustering. For horizontal distribution, TreeQSM segmented the plant into the main stem and individual branches. PointNet++ and Euclidean clustering were then used to achieve cotton boll instance segmentation. The horizontal distribution was determined by calculating the Euclidean distance of each cotton boll relative to the main stem. Additionally, branch types were classified using point cloud meshing completion and the Dijkstra shortest path algorithm. The results highlight that the accuracy and mean intersection over union (mIoU) of the 2-class segmentation based on PointNet++ reached 0.954 and 0.896 on the whole plant dataset, and 0.968 and 0.897 on the branch dataset, respectively. The coefficient of determination (R2) for the boll counting was 0.99 with a root mean squared error (RMSE) of 5.4. For the first time, this study accomplished high-granularity spatial mapping of cotton bolls and branches, but directly predicting fiber quality from 3D point clouds remains a challenge. This method provides a promising tool for 3D cotton plant mapping of different genotypes, which potentially could accelerate plant physiological studies and breeding programs.
PMID:40394606 | DOI:10.1186/s13007-025-01375-8
High resolution three-dimensional (3D) point clouds enable the mapping of cotton boll spatial distribution, aiding breeders in better understanding the correlation between boll positions on branches and overall yield and fiber quality. This study developed a segmentation workflow for point clouds of 18 cotton genotypes to map the spatial distribution of bolls on the plants. The data processing workflow includes two independent approaches to map the vertical and horizontal distribution of cotton… [#item_author]