An updated sulfate transporter phylogeny uncovers a perennial-specific subgroup associated with lignification 

Samantha M Surber

Tree Physiol. 2025 Jul 11:tpaf080. doi: 10.1093/treephys/tpaf080. Online ahead of print.

ABSTRACT

Sulfate-proton co-transporters (SULTRs) mediate sulfate uptake, transport, storage, and assimilation in plants. The SULTR family has historically been classified into four groups (SULTR1-SULTR4), with well-characterized roles for SULTR groups 1, 2, and 4. However, the functions of the large and diverse SULTR3 group remain poorly understood. Here, we present an updated phylogenetic analysis of SULTRs across angiosperms, including multiple early-divergent lineages. Our results suggest that the enigmatic SULTR3 group comprises four distinct subfamilies that predate the emergence of angiosperms, providing a basis for reclassifying the SULTR family into seven subfamilies. This expanded classification is supported by subfamily-specific gene structures and amino acid substitutions in the substrate-binding pocket. Structural modeling identified three serine residues uniquely lining the substrate-binding pocket of SULTR3.4, enabling three hydrogen bonds with the phosphate ion. The data support the proposed neofunctionalization of this subfamily for phosphate allocation within vascular tissues. Transcriptome analysis of Populus tremula × alba revealed divergent tissue expression preferences among SULTR subfamilies and between genome duplicates. We observed partitioned expression in vascular tissues among the four SULTR3 subfamilies, with PtaSULTR3.4a and PtaSULTR3.2a preferentially expressed in primary and secondary xylem, respectively. Gene coexpression analysis revealed coordinated expression of PtaSULTR3.4a with genes involved in phosphate starvation responses and nutrient transport, consistent with a potential role in phosphate homeostasis. In contrast, PtaSULTR3.2a was strongly coexpressed with lignification and one-carbon metabolism genes and their upstream transcription regulators. PtaSULTR3.2a belongs to a eudicot-specific branch of the SULTR3.1 subfamily found only in perennial species, suggesting a specialized role in lignifying tissues. Together, our findings provide a refined phylogenetic framework for the SULTR family and suggest that the expanded SULTR3 subfamilies have undergone neofunctionalization during the evolution of vascular and perennial plants.

PMID:40643194 | DOI:10.1093/treephys/tpaf080