Population-specific pangenome unveils a third FAD2 gene and solves the peanut mid-oleic fatty acid mystery
Ethan Thompson
Nat Commun. 2025 Dec 23. doi: 10.1038/s41467-025-67371-7. Online ahead of print.
ABSTRACT
Accumulating evidences have shown that the mid-oleic fatty acid phenotype in peanuts cannot be explained by the traditional two-gene model involving AhFAD2A and AhFAD2B, which are genes encoding fatty-acid desaturase 2. But the underlying genetic mechanism remains unclear. Here, we present a population-specific pangenome using the eight founder genomes of the PeanutMAGIC population. This graph-based pangenome serves as a comprehensive reference, capturing all segregating haplotypes within the population. We conduct whole genome sequencing for the MAGIC Core, a subset of 310 RILs, for genotyping. Using pangenome-based genotypes, we trace recombination for detailed genomic analysis and phenotypic association. This investigation identifies a unique third gene, named AhFAD2C, near AhFAD2B. When recombination occurs, AhFAD2C segregates from AhFAD2B. We reveal the genotype determining mid-oleic fatty acid phenotype. Our findings underscore the limitations of a single-reference genome, which leads to false association and marker discovery. In contrast, a population-specific pangenome provides a more reliable framework for genomic studies. This study reveals insights into the genetic mechanism of peanut oil quality and demonstrates the advantages of population-specific pangenomes.
PMID:41429781 | DOI:10.1038/s41467-025-67371-7
